Sample Proportion Sampling Dist: $\mu_{\hat{p}}=p$ and $\sigma_{p}=\sqrt{\frac{p(1-p)}{n}}$
Popular Z values:

Confidence	Error Probability	Z
.9	.1	1.65
.95	.05	1.96
.99	.01	2.58

Population Proportion Confidence Interval: $\hat{p} \pm z * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
Test Statistic for Proportion Hypothesis Test: $Z^{*}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}$
Hypothesis Test Decisions:

Alternative Hypothesis	Probability	P-Value
$\boldsymbol{H}_{\boldsymbol{a}}: \boldsymbol{p}>\boldsymbol{p}_{\mathbf{0}}$	Right Tail	$\mathrm{P}\left(\mathrm{Z}>\mathrm{z}^{*}\right)$
$\boldsymbol{H}_{\boldsymbol{a}}: \boldsymbol{p}<\boldsymbol{p}_{\mathbf{0}}$	Left Tail	$\mathrm{P}\left(\mathrm{Z}<\mathrm{z}^{*}\right)$
$\boldsymbol{H}_{\boldsymbol{a}}: \boldsymbol{p} \neq \boldsymbol{p}_{\mathbf{0}}$	Two Tail	$2^{*} \mathrm{P}\left(\mathrm{Z}<-\left\|\mathrm{z}^{*}\right\|\right)$

1) John Lester, a Red Sox starting pitcher, throws two types of pitches - strikes and balls. In a random sample of 113 pitches, 73 were strikes.
a. Find a 99% confidence interval for the population proportion of strikes to pitches for John Lester and give a good interpretation of the interval.
b. Find a 95% confidence interval for the population proportion of strikes to pitches for John Lester and give a good interpretation of the interval.
c. Name one of the two ways to make the confidence interval from part b narrower.
d. Test, with 95% confidence that John Lester throws more strikes than balls. Give a good interpretation of your results.
i. State Hypothesis:
ii. Check Assumptions:
iii. Calculate Test Statistic
iv. Find p-value
v. Interpret
e. Are the results the same at 99.99% confidence? Why or why not?
f. Test, with 95% confidence that the proportion of strikes John Lester throws differs from .75. Give a good interpretation of your results.
i. State Hypothesis:
ii. Check Assumptions:
iii. Calculate Test Statistic
iv. Find p-value
v. Interpret
2) A random sample of 27 students shows that 18 rated themselves higher than they rated the class.
a) Find a 99\% confidence interval for the population proportion of students that rated themselves higher than the rest of the class.
b) Find a 95\% confidence interval for the population proportion of students that rated themselves higher than the rest of the class.
c) (7 points) Name one of the two ways to make the confidence interval from part b narrower.
d) Test, with 95% confidence that more students rate themselves higher than the rest of the class. Note: You can assume normality in this case, despite $n=27<30$.
i. State Hypothesis:
ii. Check Assumptions:
iii. Calculate Test Statistic
iv. Find p-value
v. Interpret
e) (6 points) Are the results the same at 99.99% confidence? Why or why not?
