Sample Proportion Sampling Dist: $\mu_{\hat{p}} = p$ and $\sigma_p = \sqrt{\frac{p(1-p)}{n}}$

Popular Z values: _____

Confidence	Error Probability	Z
.9	.1	1.65
.95	.05	1.96
.99	.01	2.58

Population Proportion Confidence Interval: $\hat{p} \pm z * \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$

Test Statistic for Proportion Hypothesis Test: $z^* = \frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$

Hypothesis Test Decisions: -

Alternative	Probability	P-Value
Hypothesis		
$H_{a}: p > p_{0}$	Right Tail	P(Z>z*)
$H_{a}: p < p_{0}$	Left Tail	P(Z <z*)< th=""></z*)<>
$H_a: p \neq p_0$	Two Tail	2*P(Z<- z*)

- 1) John Lester, a Red Sox starting pitcher, throws two types of pitches strikes and balls. In a random sample of 113 pitches, 73 were strikes.
 - a. Find a 99% confidence interval for the population proportion of strikes to pitches for John Lester and give a good interpretation of the interval.

b. Find a 95% confidence interval for the population proportion of strikes to pitches for John Lester and give a good interpretation of the interval.

c. Name one of the two ways to make the confidence interval from part b narrower.

- d. Test, with 95% confidence that John Lester throws more strikes than balls. Give a good interpretation of your results.
 - i. State Hypothesis:
 - ii. Check Assumptions:
 - iii. Calculate Test Statistic

iv. Find p-value

- v. Interpret
- e. Are the results the same at 99.99% confidence? Why or why not?

- f. Test, with 95% confidence that the proportion of strikes John Lester throws differs from .75. Give a good interpretation of your results.
 - i. State Hypothesis:
 - ii. Check Assumptions:
 - iii. Calculate Test Statistic

iv. Find p-value

v. Interpret

- 2) A random sample of 27 students shows that 18 rated themselves higher than they rated the class.
 - a) Find a 99% confidence interval for the population proportion of students that rated themselves higher than the rest of the class.

b) Find a 95% confidence interval for the population proportion of students that rated themselves higher than the rest of the class.

c) **(7 points)** Name one of the two ways to make the confidence interval from part b narrower.

- d) Test, with 95% confidence that more students rate themselves higher than the rest of the class. Note: You can assume normality in this case, despite n=27<30.
 - i. State Hypothesis:
 - ii. Check Assumptions:
 - iii. Calculate Test Statistic

iv. Find p-value

v. Interpret

e) (6 points) Are the results the same at 99.99% confidence? Why or why not?